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Abstract
We consider how to determine all transition rates of an ion channel when it can
be described by a birth–death chain or a Markov chain on a star-graph with
continuous time. It is found that all transition rates are uniquely determined by
the distribution of its lifetime and death-time histograms at a single state. An
algorithm to calculate the transition rates exactly, based on the statistics of the
lifetime and death-time of the Markov chain at the state, is provided. Examples
to illustrate how an ion channel activity is fully determined by the observation
of a single state of the ion channel are included.

PACS numbers: 05.40.Jc, 02.50.−r, 05.90.+m, 84.35.+i, 87.19.La
Mathematics Subject Classification: 60J10, 60J27, 60K40

1. Introduction

The study of ionic channel activity plays an important role in biophysics and neuroscience
[4, 17, 1, 16, 19]. It serves as a bridge to connect molecular biology and physiology: neuron
spikes are generated due to the opening (ions can pass through) and closing of many ionic
channels. Calcium channel activity is of vital importance to the survival of the cell, to the
long-term potentiation and depression and intra-cellular, extra-cellular signalling [5]. For an
ionic channel, let σ be its open time and τ be its close time. The observations of σ and τ are
denoted by σ1, σ2, . . . and τ1, τ2, . . . etc. The histogram of σ is the open lifetime histogram
and the histogram of τ is the close lifetime histogram. Unfortunately, in experiments the ionic
channel activity is usually partly observable: it is relatively easy to determine the open and
close lifetime histograms (see, for example, figures 3.18 and 3.19 in [1]) of a single state. It
is usually difficult to tell apart conformational states (more than one close or open state). It
is stated in [1], p 165, that the time constants (transition rates) of these conformational states
cannot be determined directly from the lifetime histograms of close and open states.

0305-4470/03/051195+18$30.00 © 2003 IOP Publishing Ltd Printed in the UK 1195
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Figure 1. Schematic plot of the trajectory of the Markov chain on a star-graph of case I. The
histogram of σ1, σ2, σ3, . . . gives the open lifetime histogram and τ1, τ2, τ3, · · · give the close
lifetime histogram.
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Figure 2. Illustrated lifetime σ and death-time τ of the open state (observable state) of
case II.

As an example let us consider two cases.

Case I (Markov chain on a star graph, see figure 1):

C
α1�λ1O

λ2�α2I (1.1)

where O is the open state, C is one close state, I is another close (inactive) state, α1, α2, λ1 and
λ2 are transition rates from one state to another, i.e. they measure the ‘speed’ to jump from
one state to another (see equation (2.2) in section 2 for an exact definition). In matrix term,
we can define a matrix (transition rate matrix)

Q =

−λ1 − λ2 λ1 λ2

α1 −α1 0
α2 0 −α2




which contains all information of the Markov chain.

Case II (a birth–death chain with a two-side reflecting, see figure 2):

C2
µ2�λ1C1

µ1�λ0 O (1.2)
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where O is open state, C1, C2 are two close states, µ1, µ2, λ1 and λ0 are transition rates from
one state to another. Again the information of the Markov chain is completely described by
the matrix Q

Q =

−λ0 λ0 0

µ1 −µ1 − λ1 λ1

0 µ2 −µ2


 .

Suppose we have detailed information about the one state, for example we know exactly
the lifetime histogram of the open state and lifetime histogram of the close state (death-time
histogram of the open state). Can we uniquely determine the full channel activity in terms of
the data from an observation of the open state alone? By this, we mean to obtain the transition
rate from one (any) state to another state. For example, in case I, we have the distribution
density of τ and σ , we intend to find out constants α1, α2, λ1 and λ2.

When a channel activity can be described by a two-side reflecting birth–death chain with
continuous time parameter, there are two cases: we can observe the lifetime and death-time
of one of the reflecting barriers, i.e. edge states (O and C2 in case II above) and that of the
non-reflecting states (C1 in case II above).

• We conclude that statistically the whole birth–death chain is uniquely determined by the
probability density functions (p.d.fs) of the lifetime σ and death-time τ at one of the
reflecting barriers. In other words, the observed sequences {σn} and {τn} are sufficient
statistics of the transition rate matrix Q. This seems a quite surprising result: the whole
Markov chain is fully determined by an observation at a single state of the chain. The
underlying mechanism is that the death-time p.d.fs can be written as a linear summation
of N different exponential functions, where N is the total states of the Markov chain (see
[1] at page 165). The decay rates of the exponential functions are the eigenvalues of the
matrix Q. The coefficients of the linear summation are functions of the eigenvectors of
the matrix Q. In the case of a two-side reflecting birth–death chain, in terms of the p.d.fs
of the lifetime and death-time, we can fully recover the matrix Q. In section 2, we first
present the simplest case of a Markov chain on a star-graph to explain the idea.

• If one can only observe the lifetime σ and the death-time τ of a state of non-reflecting
barriers, then the p.d.fs of σ and τ are not sufficient for determining Q. In this case, if
we establish an equivalent relation (see below) among the transition matrix Q and obtain
the quotient set (the set of equivalent classes) of all Q-matrices under the equivalent
relation, then the p.d.fs of the lifetime and the death-time of non-reflecting barrier are
sufficient for determining which equivalent class this chain belongs to. This means that
we do not have enough information to determine the transition rate matrix completely
from the observation data described above, but enough information to determine a part of
transitions in Q (see theorem 4).

In sections 2 and 3, we address the above issues. In section 4, we include some applications
of our theory to single-ion channels in biology and two examples which illustrate the algorithm
and statistical significance of our results.

The issue that how to determine the transition matrix in terms of a partial observation
of the whole channel activity, as one might expect, has been addressed early in the literature
[13]. However our approach is totally different from their approach. In [13], they estimated
the matrix Q, directly using the maximum likelihood estimate, and the estimation could be
very rough (see page 1983 in [13]). Here we develop our algorithms employing the intrinsic
properties of the Markov process and all calculations are simply reduced to the fitting of
lifetime and death-time histograms. Once we have them, all subsequent calculations are then
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Figure 3. Schematic plot of a Markov chain on a star-graph (upper panel) and its trajectory (bottom
panel), with two close states only.

rigorous and exact. Hence we expect that our approach provides us with a more powerful and
natural way to estimate transition rates.

2. Statistics of Markov chains on star-graphs

We first consider an easy case to illustrate the general idea behind our approach. Let
{Xt : t � 0} be a Markov chain on a star-graph with state space S = {O,C1, C2, . . . , CN }.
For the concise of notation, from now on, we denote i = Ci and O = 0. Suppose that the
state O = 0 is the centre state (see figure 3) and the transition rate matrix Q = (qi,j ) has the
following form

Q =




−λ0 λ1 λ2 · · · λN

α1 −α1 0 · · · 0
α2 0 −α2 · · · 0
...

...
...

...
...

αN 0 0 · · · −αN



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where λi > 0, αi > 0 (i = 1, 2, . . . , N) and λ0 = λ1 + · · · + λN . Set

π0 =
(

1 +
N∑

i=1

λi

αi

)−1

πi = λi

αi

π0 1 � i � N. (2.1)

Then {π0, π1, . . . , πN } is the unique initial invariant probability measure of Q and satisfies

πiqij = πjqji (∀i, j ∈ S).

Let σ = inf{t > 0 : Xt �= 0} and τ = inf{t > 0 : Xt = 0} (the lifetime and the death-time
of the centre state O, respectively). Define S0 = {1, 2, . . . , N}, Q̂ = (qi,j )i,j∈S0 , which is the
matrix by deleting the 0th row and the 0th column from Q.

In the sequel, we always use P to denote the probability distribution measure on a
probability space (�,F, {Ft}t�0) such that the initial distribution is the invariant measure
{πi} and PS0 denotes the probability measure of the process starting in S0, where Ft is the
sub-sigma algebra of F generated by {Xs, 0 � s � t}. We know that

qij = lim
t→0

P(Xt = j |X0 = i) − δij

t
(2.2)

for i, j ∈ S and delta function δij . Then, for t � 0, it is easily seen that

P(τ > t) =
N∑

i=0

P(τ > t|X0 = i)PS0(X0 = i)

=
N∑

i=1

πi
∗

N∑
j=1

p̂ij (t)

= 1

1 − π0

N∑
i=1

πi e−αi t (2.3)

where π∗
i = πi/(1 − π0), (p̂ij (t)) = P̂ (t) = eQ̂t .

We can easily get the following result.

Lemma 1. The p.d.fs of σ and τ are

fσ (t) =
{
λ0 e−λ0t if t > 0
0 if t � 0

(2.4)

and

fτ (t) =
{∑N

i=1 γi e−αi t if t > 0

0 if t � 0
(2.5)

where γi = π0

1 − π0
λi .

Proof. Equation (2.4) is obvious. Equation (2.5) is a direct consequence of equations (2.1)
and (2.3). �

Lemma 2. Let d = ∑N
i=1 γi . Then

π0 = d

λ0 + d
λi = λ0

d
γi (1 � i � N).

Proof. Since

d =
N∑

i=1

γi = π0

1 − π0

N∑
i=1

λi = π0

1 − π0
λ0
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and

λi = 1 − π0

π0
γi

thus the conclusions hold. �

From lemmas 1 and 2, we can immediately obtain the following theorem.

Theorem 1. For a Markov chain on a star-graph, if the initial measure is the invariant measure
{πi}, then the transition rates of the Markov chain on the star-graph {Xt; t � 0} can be fully
determined by the p.d.fs of fσ (t) and fτ (t).

For Markov chains on a star-graph, we can easily see that it is not possible to uniquely
assign αi, λi to a single state. When N = 2, the situation considered here is a special case of
subsection 3.2. We refer the reader to subsection 3.2 for more details on the issue about the
uniqueness.

In practical applications, if we suppose that an ionic channel activity is described as a
Markov chain on a star-graph of N states, we can measure a sequence of death-time τi and
lifetime σi, i = 1, . . . , n for the open state. We can then fit the histogram of τi by

N∑
i=1

γ̂i exp(−α̂i t)

(see, for example, [13–15] on exactly fitting methods) and the histogram of σi by

λ̂0 exp(−λ̂0t).

According to lemma 2, we can easily obtain the transition matrix Q. More exactly, we have
α̂i, γ̂i available for i = 0, . . . , N , and λ̂i are obtained via

d̂ =
N∑

i=1

γ̂i π̂0 = d̂

λ̂0 + d̂
λ̂i = λ̂0

d̂
γ̂i i = 1, . . . , N.

Hence once we have the fitting of the death-time histogram, all subsequent calculations are
rigorous and exact. In other words, we can determine the transition rates directly from the
histogram of τ and σ , in contrast with the claim mentioned above [1].

In summary, the basic idea of our approach is that from the p.d.fs of the lifetime and
death-time, we have enough information to recover the whole transition matrix Q.

3. Statistics of finite birth–death chains

In this section, we turn our attention to the case of a birth–death chain (see figure 4), which is
a proper model for many ionic channels.

Let {Xt : t � 0} be a birth–death chain with state space S = {0, 1, . . . , N} and transition
rate matrix Q = (qi,j ) which satisfies

qi,j =




−(λi + µi) if j = i

µi if j = i − 1
λi if j = i + 1
0 if |j − i| > 1

(3.1)



Identifying transition rates of ionic channels 1201

σ τ 

Open state 

C
1

O 

C
2

C
3

Time

Figure 4. Trajectories of a birth–death chain with four states.

where µ0 = 0, λN = 0, λi > 0 (0 � i � N − 1), µi > 0 (1 � i � N), i.e.

Q =




−λ0 λ0 0 0 · · · 0 0
µ1 −µ1 − λ1 λ1 0 · · · 0 0
0 µ2 −µ2 − λ2 λ2 · · · 0 0

...

0 0 0 0 · · · µN −µN


 .

Hence {0, N} are two reflecting barriers. Set

π0 =
(

1 +
N∑

i=1

λ0λ1 · · ·λi−1

µ1µ2 · · ·µi

)−1

πi = λ0λ1 · · · λi−1

µ1µ2 · · · µi

π0 1 � i � N. (3.2)

Then {π0, π1, . . . , πN } is the unique invariant probability measure of Q and satisfies
πiqij = πjqji (i, j ∈ S).

3.1. Reflecting barriers

For the concreteness of further development, we concentrate on state 0. As before, define
τ = inf{t > 0 : Xt = 0} and σ = inf{t > 0 : Xt �= 0} (the death-time and lifetime of
reflecting barrier 0, respectively). Here let us always employ the standard convention that the
infimum of an empty set is infinity. Set Q̂ = (qi,j )i,j∈S0 , where S0 = {1, 2, . . . , N}, which is
the matrix by deleting the 0th row and the 0th column from Q. Let P be a probability measure
such that {Xt; t � 0} with the initial distribution {π0, . . . , πN } and the transition rate matrix
Q. PS0 denotes the probability measure such that {Xt; t � 0} starts in S0. Define

P̂ (t) = (p̂ij (t)) ≡ eQ̂t ≡
∞∑

n=0

tn

n!
Q̂n t � 0.

Thus

P(τ > t) =
N∑

i=1

P(τ > t|X0 = i)PS0(X0 = i)

=
N∑

i=1

πi
∗

N∑
j=1

p̂ij (t) (3.3)
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where

PS0(X0 = i) = πi
∗ = πi

1 − π0
.

For convenience, we always use 〈· · ·〉 denoting a column vector, (· · ·) a row vector,
diag(· · ·) a diagonal matrix, and AT the transpose of A. Write 	 = diag(π1, π2, . . . , πN).

On the real vector space RN, we define inner product

(X, Y )	 =
N∑

i=1

πixiyi for any X,Y ∈ RN.

It is easy to verify that P̂ and Q̂ are symmetric linear transition matrices with respect to the
inner product (·, ·)	. Thus Q̂ has N real eigenvalues −α1,−α2, . . . ,−αN such that αi > 0
(see [6, 24]) and N orthogonal unit eigenvectors ε1, ε2, . . . , εN with respect to (·, ·)	, where
εi = 〈ε1i , . . . , εNi〉 (i = 1, 2, . . . , N), that is to say, for any i, j ∈ S,

Q̂εi = −αiεi (3.4)

(εi, εj )	 =
N∑

k=1

εkiεkjπk = δij . (3.5)

Set E = (ε1, . . . , εN ) = (εij ),W = (ωij ) = E−1. Write A = diag(α1, α2, . . . , αN ). By (3.4)
and (3.5), we get

Q̂ = −W−1AW WT W = 	

WQ̂ = −AW 	Q̂ = −WT AW.
(3.6)

Let β = 〈β1, β2, . . . , βN 〉 ≡ WI, where I = 〈1, 1, . . . , 1〉. Then, by (3.3) and (3.6), for t � 0

P(τ > t) = 1

1 − π0

N∑
i=1

πi

N∑
j=1

p̂ij (t)

= 1

1 − π0

N∑
i=1

πi(P̂ (t)I)i

= 1

1 − π0
IT 	W−1 e−AtWI

= 1

1 − π0
βT e−Atβ

= 1

1 − π0

N∑
i=1

βi
2 e−αi t . (3.7)

If we define


γi = β2
i αi

1 − π0
1 � i � N

cn = ∑N
i=1 βi

2αi
n = βT Anβ n � 0

dn = ∑N
i=1 γiα

n−1
i n � 0

(3.8)

then we have

cn = (1 − π0)dn. (3.9)
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Lemma 3. The p.d.f. of τ is

fτ (t) =
{∑N

i=1 γi e−αi t if t > 0

0 if t � 0.
(3.10)

For n � 1,

dn = (−1)n
dn

dtn
P (τ > t)|t=0 (n � 1). (3.11)

Proof. It follows directly from (3.7) and (3.8). �

For the p.d.f. of the lifetime σ , it is easy to check that (see [22, 23])

fσ (t) =
{
λ0 e−λ0t if t > 0
0 if t � 0.

(3.12)

Thus λ0 = 1/Eσ . Therefore, λ0 can be simply estimated by the p.d.f. of σ .

Lemma 4. We have the following conclusions

(i)

π0 = d1

λ0 + d1
. (3.13)

(ii) For 1 � n � N − 1, λn can be expressed in terms of rational functions of
{λ0, d1, d2, . . . , d2n+1}.

(iii) For 1 � n � N,µn can be expressed in terms of rational functions of {λ0, d1, d2, . . . , d2n}.
Proof. Since Q̂I = 〈−q1,0, 0, . . . , 0〉, by (3.6), we have

π1q1,0 = −IT 	Q̂I = IT WT AWI = βT Aβ = c1. (3.14)

By (2), π0λ0 = π1q1,0, then π0λ0 = c1 = (1 − π0)d1. Thus (i) holds.
Now let us prove (ii) and (iii). Let qi = −qi,i,Wi = 〈ω1i , ω2i , . . . , ωNi〉 is the ith column

vector of W .
According to

π0 = d1

λ0 + d1
cn = λ0dn

λ0 + d1

and λN = 0, we only need to prove the following facts: for 1 � n � N ,
(H1) µn = qn,n−1, λn + µn = −qn,n = qn, λn = qn,n+1 and πn all are rational functions of

{c1, c2, . . . , c2n+1};
(H2) Wn = gn(A)Aβ , where gn(A) is a polynomial of A with deg(gn) = n − 1 (here

deg(g) denoting the degree of g) and its coefficients are rational functions of {c1, c2, . . . , c2n}.
Now let us use mathematical induction to prove these facts as follows.
When n = 1, since

WQ̂I = W 〈−q1,0, 0, . . . , 0〉 = −q1,0W1

then by (3.6), we get

q1,0W1 = Aβ. (3.15)

Thus

π1q
2
1,0 = WT

1 W1q
2
1,0 = (Aβ)T (Aβ) = βT A2β = c2. (3.16)
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By (3.14)–(3.16), we obtain

µ1 = q1,0 = π1q
2
1,0

π1q1,0
= c2

c1

π1 = (π1q1,0)
2

π1q
2
1,0

= c2
1

c2
(3.17)

W1 = c1

c2
Aβ ≡ g1(A)Aβ

where g1(A) = c1

c2
I .

Again by (3.6), 	Q̂ = −WT AW , that is to say

πiqij = −WT
i AWj i, j ∈ S0 (3.18)

and again by (3.15),

π1q1 = WT
1 AW1 = 1

q2
1,0

(q1,0W1)
T A(q1,0W1)

= 1

q2
1,0

(Aβ)T A(Aβ) = c3

q2
1,0

.

Thus by (3.16)

λ1 + µ1 = −q1,1 = q1 = c3

π1q
2
1,0

= c3

c2
(3.19)

q1,2 = λ1 = q1 − q1,0 = c3

c2
− c2

c1
.

Therefore, according to (3.17) and (3.19), for n = 1 the inductive assumptions hold.
Now we suppose that for all 1 � n � k, these results hold. Then, when n = k + 1 (setting

W0 = 0), by (3.6), we have

qk+1,kWk+1 = (qkI − A)Wk − qk−1,kWk−1. (3.20)

By (3.18), we get

πk+1qk+1,k = πkqk,k+1 = −WT
k AWk+1. (3.21)

Hence

qk+1,k = qk+1,k

πkqk,k+1

(−WT
k AWk+1

)
(by (3.21))

= 1

πkqk,k+1

[
WT

k A(A − qkI)Wk + qk−1,kW
T
k AWk−1

]
(by (3.20))

≡ βT Ah(A)Aβ (3.22)

where

h(A) = 1

πkqk,k+1

[
(A2 − qkA)g2

k (A) + qk−1,kgk−1(A)gk(A)
]
.

Thus, by the inductive assumptions (H1), πk, qk,k+1 are rational functions of {c1, c2, . . . , c2k}.
Furthermore, we have Wk−1 = gk−1(A)Aβ and Wk = gk(A)Aβ from (H2). Then we have that
h(A) is a polynomial of A of deg(h) = 2k, and so qk+1,k is a linear combination of βT Ai+2β

(i = 0, 1, . . . , 2k), with coefficients of rational functions of {c1, c2, . . . , c2k}. Therefore, by
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(3.8) (i.e. βT Anβ = cn) and (3.22), qk+1,k is a rational function of {c1, c2, . . . , c2k+1, c2k+2}
and so do

πk+1 = πkqk,k+1

qk+1,k

.

Now let us prove that Wk+1 has the properties of the inductive assumption in (H2). Again
using (3.20) we know that Wk+1 = gk+1(A)Aβ , where

gk+1(A) = 1

qk+1,k

[(qkI − A)gk(A) − qk−1,kgk−1(A)]

and from the result about qk+1,k , we have that deg(gk+1) = k and its coefficients are rational
functions of {c1, c2, . . . , c2k+2}.

About qk+1,k+2 and qk+1, by (17), we get

πk+1qk+1 = WT
k+1AWk+1 = βT gk+1(A)A3gk+1(A)β.

Hence, using the results about gk+1(A) and (3.8), qk+1 and qk+1,k+2 = qk+1 − qk+1,k are rational
functions of {c1, . . . , c2k+2, c2k+3}.

These have proved that the conclusions of induction are true for n = k + 1
(1 � n � N). �

From lemmas 3 and 4, we can easily obtain the following main theorem in this section.

Theorem 2. If the initial measure is the invariant measure {πi}, then the probability measure
of birth–death process {Xt ; t � 0} can be uniquely determined by the p.d.fs fσ (t) and fτ (t).
And every element of its birth–death matrix Q = (qi,j ) can be expressed in terms of rational
functions of d1, d2, . . . , d2N, λ0 in (3.11) and (3.12).

Remark. Obviously the result also holds for the reflecting barrier N.
Let

X = S[0,+∞) = {X = (xt : t � 0) : xt ∈ S for any t � 0}
be the path space of the birth–death chain {Xt; t � 0}. We define two i.i.d. sample sequences
on X, the lifetime sample sequence {σn : n � 0} and the death-time sample sequence
{τn : n � 0} as follows:

τk = t2k − t2k−1 (k � 0)

σk = t2k+1 − t2k (k � 0)

and

t−1 ≡ 0

t0 = inf{t > 0 : Xt = 0}
t1 = inf{t > t0 : Xt �= 0}

for any k � 1,

t2k = inf{t > t2k−1 : Xt = 0}
t2k+1 = inf{t > t2k : Xt �= 0}.

In theorem 3, we will give a new statistics for Markov chains by utilizing the lifetime sequence
{σn} and the death-time sequence {τn}.
Theorem 3. Every element qi,j (i, j ∈ S) of the transition rate matrix can be estimated
sufficiently by the i.i.d. sample sequences {σk} and {τk}.
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Proof. First, by the law of large number, we note that the p.d.fs fσ (t) and fτ (t) of σ and τ , i.e.
λ0 and coefficients

(
αi, β

2
i

)
(i = 1, 2, . . . , N) of fσ (t) and fτ (t), can be estimated sufficiently

by the i.i.d. sample sequences {σn} and {τn}. Next, by lemmas 3 and 4, qi,j (i, j ∈ S)

is a fractional function of λ0 and dn (n = 1, 2, . . . , 2N), which is the rational function of(
αi, β

2
i

)
(i = 1, 2, . . . , N). Therefore the results of the theorem hold. �

Algorithm of calculating Q
Suppose that we have distribution functions as defined by equations (3.10) and (3.12).
Step 1. Calculate γi, i = 1, . . . , N, ck, dk, k � 0 according to equation (3.8).
Step 2. Calculate π1, q1,1, q1,2, q1,0 according to equations (3.17) and (3.19), and

g1(A) = c1

c2
I.

Step 3. Suppose that we have πk, qk,k−1, qk,k and qk,k+1 for k = 1, 2, . . . , n, then

qn+1,n = βT Ah(A)β

where

h(A) = 1

πnqn,n+1

[
(A2 − qnA)g2

n(A) + qn−1,ngn−1(A)gn(A)
]

with g0 = 0

gn+1(A) = 1

qn+1,n

[(qnI − A)gn(A) − qn−1,ngn−1(A)]

qn+1,n+1 = βT gn+1(A)A3gn+1(A)β

and then finally

qn+1,n+2 = qn+1,n+1 − qn+1,n

πn+1 = πnqn,n+1

qn+1,n

.

Step 4. For n = N , we have simply qN,N = −qN,N−1.

3.2. Non-reflecting barriers

In the case of observing at a state of non-reflecting barriers, we cannot obtain the results in
theorem 2, because the information obtained from observation cannot distinguish which side
it comes from (left or the right). We can tackle the problem via two different approaches.
One is to establish an equivalent relationship among Q = (qi,j ) such that from the observed
data, one can uniquely determine an equivalent class. The other way is to increase the
number of observable states. In fact, the observation of the lifetime and the death-time of two
neighbouring states of birth–death chains can determine the whole chain. If the two observable
states are not neighbouring, from the observation of their states, it cannot be sufficient for
estimating the whole birth–death chain, because there is the same problem as the case of
non-reflecting barriers.

Now we follow the first approach to deal with the case when Q is not uniquely determined
by the observed data. Set


 = {θ = (λ0, λ1, . . . , λN−1; µ1, . . . , µN); λi > 0, µi > 0}. (3.23)

For each θ ∈ 
, let Pθ be a probability measure with the transition rate matrix Q
corresponding to θ in (1). Let k0 be a non-reflecting barrier in S, 1 � k0 � N − 1. Set
σk0 = inf{t > 0 : Xt �= k0} and τk0 = inf{t > 0 : Xt = k0}. Since there is one-to-one
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corresponding relation in θ,Qθ and Pθ (under initial invariant measure), we can define an
equivalent relation on 
 as follows: θ1, θ2 ∈ 
 are called equivalent, if τk0 has the same
probability distribution under Pθ1 and Pθ2 . We denote the quotient space of 
 under this
equivalent relation as 
̃.

Let Qθ and {πi(θ)} correspond to θ in terms of the way of equations (3.23), (3.1) and
(3.2). Let Q̂θ be the matrix by deleting the k0th row and the k0th column from Qθ . Then we
have the following result as the ways in (3.3)–(3.7).

Lemma 5. For any θ ∈ 
, the probability distribution of τk0 under Pθ has the following form

Pθ
(
τk0 > t

) = 1

1 − πk0(θ)

N∑
i=0,i �=k0

β2
i (θ) e−αi(θ)t (t � 0) (3.24)

where αi(θ) > 0, β2
i (θ) > 0 (i = 1, 2, . . . , N),

∑N
i=0,i �=k0

β2
i (θ) = 1 − πk0(θ), and −αi(θ)

(i = 1, 2, k0 − 1, k0 + 1, . . . , N) is the eigenvalues of Q̂θ .

Theorem 4. Let qk0 > 0, and α0, . . . , αk0−1, αk0+1, . . . , αN , γ0, γ2, . . . , γk0−1, γk0+1, . . . , γN

be positive numbers such that
∑N

i=0,i �=k0
γiαi

−1 = 1 . Then there exists an unique element θ̃

in 
̃ such that for ∀ θ ∈ θ̃ , τk0 under Pθ has the p.d.f.

fτk0
(t) =

N∑
i=0,i �=k0

γi e−αi t (t > 0) (3.25)

and σk0 under Pθ has the p.d.f.

fσk0
(t) = qk0 e−qk0 t (t > 0).

Furthermore, if α0, α1, . . . , αN are different from each other, then there are C
k0
N different

elements θ for each θ̃ , and each entry of θ ∈ θ̃ can be expressed by a rational function of
α0, α1, . . . , αN ; γ0, γ1, . . . , γN and qk0 .

Proof. The existence and (3.25) come from the following construction proof. The uniqueness
follows from theorem 2 and the definition of equivalent relation. Now we prove the remaining
parts of the theorem.

Selecting k0 numbers from N different positive numbers α0, α1, . . . , αk0−1, αk0+1, . . . , αN ,
there are C

k0
N different ways. Once some k0 positive numbers have been selected, such as

α0, α1, . . . , αk0 ; then the corresponding coefficients γi of exponential function e−αi t have also
been selected. According to theorem 2, the k0 pairs of number (αi, γi) (i = 0, 1, 2, . . . , k0)

and qk0 can uniquely determine a matrix Q̂S1 (where S1 = {0, 1, 2, . . . , k0}), and the other
N − k0 pairs of number (αi, γi) (i = k0 + 1, . . . , N) and qk0 can uniquely determine a matrix
Q̂S2 (where S2 = {k0 + 1, . . . , N}). By (3.2), πk0λk0 = πk0+1µk0+1, πk0µk0 = πk0−1λk0−1,
we know that λk0 and µk0 can be uniquely determined by αi, γi (i = 0, 1, 2, . . . , N) and qk0 .
Hence, if some k0 pairs of numbers (αi, γi) (i = 0, 1, 2, . . . , k0) are selected, then they can
uniquely determine a matrix Q with the form (3.1), and by lemma 5, the p.d.f. of τk0 is defined
by (3.25) under Pθ , where θ corresponds to Q. The other conclusions simply follow from
theorem 2. �

Remark 1. We can extend the results of theorem 2 to infinite countable birth–death chains
under some mild conditions, such as uniqueness of Q-processes. The method mainly follows
from the spectral methods of the transition probability and the death-time distribution in the
same ways in this section.

Remark 2. For Markov chains on star-graphs, theorem 3 also holds.
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4. Numerical examples

In this section, we present some applications of our theory to kinetic analysis of single-ion
channels and two examples, which show how our general method works in calculation of
transition rate matrix from the p.d.fs of lifetime and death-time.

There are different opening levels in ion channels, on which many interesting
characteristics of behaviour of single-ion channels depend. The behaviour of ion channels
has been analysed by Colquhoun and Hawkes [6–8] in terms of a Markov chain with the
states which are the different opening levels. In most cases of practical interest, there are two
kinds of mechanisms which are commonly considered for single-ion channels: birth–death
chains and Markov chains on star-graphs. In these mechanisms, there are likely to be only one
observable state, called open state, which means that the channel is fully open (say highest
opening level), and several experimentally non-observable shut states, which indicate different
opening levels. Then the experimental record can provide two sequences, one is the lifetime
sequence and the other is the death-time sequence. Both of them are i.i.d. sequences from the
observation of the Markov chain staying or not staying at the state 0 (see figure 2).

(a) The mechanism of chains on star-graphs. One sort of mechanism to consider for single-
ion channel has N shut states (say state 1, 2, . . . , N) and only one open state (say state
0). In this kind of systems, any transition cannot directly happen between the shut states,
that is to say, the transition rate from one state to another is zero; while each shut state
can transit to the open state. Therefore, the shut states cannot intercommunicate directly
but only by going through the open state. Thus this is the case of Markov chains on
star-graphs, considered in section 2 with the centre state 0 (see figure 1).

(b) The mechanism of birth–death chains. Another sort of mechanism for single-ion channel
mechanism also has N shut states (say state 1, 2, . . . , N), which are the different levels
of openings, and one open state (say state 0). However, in this case, the shut states
can only intercommunicate directly with their neighbouring level of shut states, i.e.
1 � 2 � · · · � N , and the open state 0 can only transit to the first level of shut state
(state 1). This is the case of birth–death chains that we consider in section 2 with a
reflecting barrier 0 .

In the following, we give two examples to illustrate the algorithm and statistical
significance of our results.

Example 1. Let {Xt; t � 0} be a birth–death chain with state space S = {0, 1, 2} and transition
rate matrix

Q = (qi,j )S×S =

−1 1 0

0.5 −1 0.5
0 1 −1


 . (4.1)

Then it is easy to know that the invariant measure of Q is

(π0, π1, π2) = (0.25, 0.5, 0.25)

and the eigenvalues of Q̂ are −α1 = −1 +
√

2
2 , −α2 = −1 −

√
2

2 , and

P(τ > t) = 3 + 2
√

2

6
e−α1t +

3 − 2
√

2

6
e−α2t (t � 0)

fτ (t) = 2 +
√

2

12
e−α1t +

2 − √
2

12
e−α2t (t > 0)

fσ (t) = e−t (t > 0).
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Figure 5. Lifetime and death-time histograms of example 1 with 10 000 samples (upper panel),
with 100 000 samples (bottome panel).

We can calculate the transition rate matrix Q from fσ (t) and fτ (t) by using the method
of lemma 4. We omit the details to avoid repeating similar thing in example 2.

In the following we first get the i.i.d. sample sequences of σ and τ , by simulating the
sample path of this Q-process, and then we obtain the estimates of the p.d.fs of σ and τ , and
finally we calculate the corresponding transition rate matrix in (4.3) and (4.2) (see figure 5).
From figure 3 for 10 000 and 100 000 σ and τ respectively, we can see that the accuracies of
such estimates for the p.d.fs of σ and τ are very good.

(1) 10 000 samples. The estimating p.d.fs of σ and τ are (see figure 5)

fσ (t) = 1.000 970 e−1.000970t

fτ (t) = 3.279 642 e−0.293548t + 0.024 288 e−1.534449t .

The transition matrix obtained from fσ (t) and fτ (t) is

Q =

−1.000 970 1.000 970 0

0.502 388 −0.931 411 0.429 023
0 0.896 586 −0.896 586


 . (4.2)

(2) 100 000 samples. The estimating p.d.fs of σ and τ are (see figure 5)

fσ (t) = 1.000 802 e−1.000802t

fτ (t) = 3.324 511 e−0.292942t + 0.015 630 e−1.676964t .

The transition matrix obtained from fσ (t) and fτ (t) is

Q =

−1.000 802 1.000 802 0

0.477 728 −0.941 594 0.463 866
0 1.028 313 −1.028 313


 . (4.3)
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Comparing the matrices (4.3) and (4.2) with the original Q-matrix in (4.1), it illustrates
that the statistics is very efficient.

Example 2 (estimation of single-ion channel). From the experiment records in brain
neurilemma of newborn mouse (see [21]), we obtain the estimation of p.d.fs of open time
σ and shut time τ as follows

fσ (t) = 0.1960 e−0.1960t

fτ (t) = 0.006 15 e−0.0504t + 0.007 25 e−0.0219t + 0.209 00 e−0.3840t

where N = 3 is the total number of kinetically distinguishable shut states that the system can
adopt. Using the method in section 3, we have

q0 = −q0,0 = q0,1 = λ0 = 0.1960. (4.4)

Let
α1 = 0.0504 α2 = 0.0219 α3 = 0.3840

γ1 = 0.006 15 γ2 = 0.007 25 γ3 = 0.209 00.

Because d1 = γ1 + γ2 + γ3 = 0.222 40, hence π0 = d1
λ0+d1

= 0.531 55, 1 − π0 = 0.468 45.

Since

dn = γ1α
n−1
1 + γ2α

n−1
2 + γ3α

n−1
3 cn = (1 − π0)dn = 0.468 45dn

using the induction process in the proof of theorem 2, we can obtain that

q1,0 = µ1 = c2

c1
= 0.362 971

q1,2 = λ1 = c3

c2
− c2

c1
= 0.019 036 (4.5)

q1 = q1,0 + q1,2 = 0.382 007

and

q2,1 = µ2 = c1(c4 − q1c3)

c1c3 − c2
2

= 0.035 693

q2 = λ2 + µ2 = c5 − 2q1c4 + q2
1c3

c4 − q1c3
= 0.040 073 (4.6)

q2,3 = λ2 = q2 − µ2 = 0.004 380

and

µ3 = q3,2

= 1

λ2(c4 − q1c3)

[
c6 − (2q1 + q2)c5 +

(
q2

1 + 2q1q2 − λ1µ2
)
c4 − (

q2
1q2 − q1λ1µ2

)
c3

]
= 0.031 720. (4.7)

By (4.4)–(4.7),

Q = (qi,j ) =




−0.196 000 0.196 000 0 0
0.362 971 −0.382 007 0.019 036 0

0 0.035 693 −0.040 073 0.004 380
0 0 0.031 720 −0.031 720


 .

If we use O denoting the open state 0 and C1, C2, C3 denoting the first, second, third
shut states 1, 2, 3, respectively, then the transition rate between one state and another has the
following form:

O � 0.196000
0.362971C1 � 0.019036

0.035693C2 � 0.004380
0.031720C3.
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From the results above, we know that the occupation time at the second and third shut
states is usually longer than at the open state because their occupation times obey exponential
distributions with smaller exponents. And if the ion channel is at the first shut state, it mostly
goes to the open state, and rarely goes to the second and third shut states. Thus the observation
record of conductance of ion channel tends to a kind of cluster phenomena. Here our results
are consistent with the experimental results and biological intuitive view (see [21]).

5. Discussion

In the research of single-ion channel, there are many other sorts of mechanisms as proposed
in [6–8], such as circle-form chains, etc. Thus there is the same problem to be considered,
but it is seemly impossible to solve this problem by observing the lifetime and death-time at
a single state. Let us look into the issues we discussed in the paper. Basically we intend to
estimate 2N independent parameters in the Q matrix. What we have from experiments is a
set of 2N + 1 independent parameters in the distribution density function of the lifetime and
death-time. Therefore the results: to recover the full matrix Q or characterize the full Markov
chain in terms of the observation at a single state, might not be so surprising. For general case,
it is certainly not possible.

Generally for Markov chains, we can propose the following open problems: if one can
observe the lifetime and death-time of a subset of the whole state space, under what conditions
of this subset, we can sufficiently determine the statistical characteristics of the whole Markov
chain? In fact, the results in the present paper also suggest a new kind of statistics for Markov
chains: to estimate the whole chain exclusively in terms of the observation of a part of states.
We will apply our results to more biological data and report them in further publications in
statistics journals.

Our ultimate purpose is to build a theory to bridge the single-channel activity and the
single-cell activity, which lacks in the current literature despite many years research (for
example, see [11, 12] for reviews).
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